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We consider the problem of the escape time (mean first-passage time) from a given interval in
the case when the noise is a sum of many independent random telegraph signals. We reduce the
problem to the solution of a linear system of algebraic equations valid for arbitrary intensities and
correlation times of the noise. The solution allows an easy investigation of the limiting case of the
Ornstein-Uhlenbeck process. We find exact scaling laws obeyed by the mean first-passage times in
the case of random telegraph signals and the Ornstein-Uhlenbeck process.

PACS numbers: 02.50.—r, 05.40.+j

I. INTRODUCTION

The problem of the mean first-passage time (MFPT)
for a one-dimensional dynamical equation involving
stochastic driving by an external process with correlation
time has attracted recently attention of several groups
of investigators [1-14]. Usually, one considers the situa-
tion when the dynamics of a system is governed by the
stochastic differential equation:

% = F(p) +2()G(p), (1.1)

where the coordinate p describes the state of the sys-
tem and z(t) is a stochastic process with zero mean and
exponentially vanishing time correlation:

r t—t
@®) =0, @0z) = Lo (<L) a2

In the limit 7 — O the process z(t) approaches the white-
noise limit:

(z(8) =0,

Further assumptions about the process z(t) are also im-
portant: one can consider the dichotomous noise [2, 3,
5, 11], but if we demand that xz(t) is Markovian and
Gaussian we are left with the single possibility [15] of
the Ornstein-Uhlenbeck process [16]. In applications we
have usually G(p) = 1, whereas F'(p) is some nonlinear
potential. Equation (1.2) describes thus the overdamped
motion in the nonlinear potential F'(p) under the influ-
ence of the stochastic driving noise z(t).

The problem consists of calculation of the mean time
after which the system coordinate p crosses for the first
time the boundary of the prescribed region in which the
system was initially put (e.g., the first time after which a
particle escapes from the potential well). The evolution
of the system, due to the finite value of the correlation
time 7, is non-Markovian, which precludes the construc-
tion of the exact Fokker-Planck-type equation.

(z(t)z(0)) = 2T'8(t — t'). (1.3)
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Various approximations, sometimes with seemingly
conflicting results, and valid for different correlation
times and intensities of the noise were developed (cf. [9]
and [11] for critical discussion of various results). Various
types of numerical simulations were performed [11-14].
We recommend the reference list in Ref. [6] for further
bibliographical information.

In our two previous publications [17, 18], to which the
present paper is a sequel, we developed a systematic
procedure allowing for finding MFPT using the approx-
imation of the Ornstein-Uhlenbeck process by a finite
number of discrete independent jumping processes of the
telegraph type. The resulting addition of a finite num-
ber of random telegraph signals (RTS) is usually called
the pre-Gaussian noise [19], whereas in the limiting case
of (appropriately scaled) RTS we recover the Ornstein-
Uhlenbeck process.

In previous work [17, 18], we were able to derive a sys-
tem of differential equations fulfilled by various MFPT’s
in the presence of pre-Gaussian noise. The equations had
to be supplemented with appropriate boundary condi-
tions. We have formulated these non-Markovian bound-
ary conditions guided by the earlier results of Refs. (2, 4,
5] (see also [3]).

From the point of view of possible applications, the
most interesting situation arises when F'(p) corresponds
to a bistable potential. Postponing the general situation
of arbitrary potentials F'(p) and G(p) to a further publi-
cation, in the present paper we shall concentrate on the
simplest situation in which F(p) =0 and G(p) = 1:

dp
i.e., a particle driven by a purely stochastic force. The
resulting p(t) corresponds to a colored Wiener-Lévy
stochastic process. In order to study the escape time
for such a stochastic process we shall assume that ini-
tially the particle corresponding to p(t) is put inside of
some arbitrary interval [A, B]. The mean first-passage
time (or escape time) is determined as the mean first

(1.4)
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time at which the particle reaches one of the ends of the
interval. The same problem in the case of a dichotomous
(two state) noise was considered in Ref. [5] and inves-
tigated numerically in Ref. [12]. In Ref. [7] the authors
derived a general method of treating multivalued noise in
the context of the mean first-passage time and applied it
to rederive the mean first-passage distribution in the case
of a non-Markovian dichotomous noise as well as to find
the mean first-passage time in the physically interesting
model with dichotomous noise in which the motion can
proceed in only one direction (Giddings-Eyring model).

In the next section we formulate the problem in terms
of the RTS. Sections III and IV are devoted to the ana-
lytical solutions of the problem, whereas Sec. V provides
the numerical investigations of the limiting case of the
Ornstein-Uhlenbeck process.

II. EQUATIONS FOR THE MEAN
FIRST-PASSAGE TIME IN THE CASE OF RTS

In the case of the pre-Gaussian noise, the driving
stochastic process z(t) is a sum of a finite number of N
independent Markov random telegraph signals z;(t),i =
1,..., N with the mutual correlation functions (see, e.g.,
Ref. [19] and references cited therein):

(2:(8)z;(t")) = a2 exp (—'t—;—t—') . 2.1)

1

(F(p)_aa_p +naGl) 5 - %) Talo) + o= (N—;—"Tn+z(p) +

with mixed boundary conditions:
T.(A)=0 forn <0,

(2.7)
T.(B)=0 forn>0.

In our case, since F(p) = 0 and G(p) = 1, Eq. (2.6)
takes a particularly simple form, which in matrix nota-
tion reads

d 1
—_—T = —
dp 2ar

where T is the column vector with T,,(p),n = —N, —N +

2,...,N—2,N as its components. The (N +1) x (N +1)
matrix M has elements

1
MT + -w, (2.8)

N -k N N+k
M = -—-—2-k—5k,z—2 + ?5&1 - T‘Sk,lﬂ’
(2.9)
k,Jl=-N,-N+2,....N—-2 N+2
and the components of the vector w read
wi = % k=-N,-N+2,...,N-2,N. (2.10)
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The composed process,

N
z(t) = ) zi(t),

i=1

(2.2)

is thus characterized by the following autocorrelation:

@) = Zewp (<125, (2.3)
where
I = Na’r (2.4)

and T is the correlation time. To simplify the following
considerations we assume that N is odd: N = 2K —
1,K=1,2,....

It was shown in Ref. [18] that the MFPT for the dy-
namical variable p can be expressed as

Yo\ /N

0= Y (3) (ska) 0 (25)
n=—N 2

The auxiliary functions T,(p), for n = —N,—-N +

2,...,N—2,N (having their own interpretation of mean
first-passage time for some prescribed initial configura-
tions of the telegraphs) fulfill a set of linear differential
equations [18]:

N +
. "Tn-zo»)) Y

(2.6)

III. SPECTRUM AND EIGENVECTORS OF M

In this section it will be more convenient to use the
standard numbering of the components in Eq. (2.8), in
which the indices run from 1 to N + 1. Using this con-
vention we obtain for the matrix elements of M:

N-a+1 N
T 2a-1) - woap-1t 2@—1) — s
_ a—1 s
2(a—1) - N ®F+D

My =

o,f=1,2...,N+1. (3.1)

Standard methods of solving equations of the type
(2.8) require finding the eigenvalues and eigenvectors of
the matrix M. To this end let us denote

y=—NA—N, pu=2\ (3.2)

and observe that the characteristic equation for the ma-
trix M can be written in the form
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-1-A 1 0
N —
N1—2 N2 A JNV—;
0 —2_ N __\
det(M — A) =det N-4 N-4 =0. (3.3)
N—
R
0 -1 1-A
Multiplying the consecutive rows of the matrix M — A by N,N —2,N —4,...,—N + 2, —N, respectively, we obtain
y N 0
1 y+p N-1
1 0 2 y+2u
NN —9)F 12 det(M — \) = det = 0. (3.4)
N-1 y+(N-1)u 1
0 N y+ Ny
Let us denote
Yy n 0

1l y+p n-1
0 2 y+2u

Wi (y, p) = det ) (3.5)
”n—l y+(n—1p 1
0 n Yy+nu

then

det(M — A\) = 0 <= Wi (y,u) =0. (3.6)
We shall prove that W, (y, p) fulfills the following recurrence relation:

Waly, 1) = (y +n0)We_1(y + p — o, ), (3.7)
where

a=%(u+ \//J.T-F—Z), (3.8)
and consequently

0% = po + 1. (3.9)

Indeed, adding to each column of W, all consecutive columns to the right multiplied by o,02,03, etc. and then
subtracting from each row the preceding one multiplied by o, we obtain using (3.9)

Y+ nu n 0
0 y—o+u n—1
0 1 y—o+2u
We(y, 1) = det
n—2 y—o+(n—-1)u 1
0 n—1 Yy—o+nu

from which the relation (3.7) follows immediately. The recurrence equation (3.7) is easy to solve and gives

n

Wiy, 1) = [[ly + ks + (n — 2k)a]. (3.10)
k=0

Taking into account our assumption that NV is odd and the definitions (3.2) and (3.8) we obtain finally
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N-1
2

det(M — ) = 0 <= 0= Wn(y,u) = [ [N? = (V -2k)*(\*+1)],

k=0

hence the eigenvalues of M are given by

N \2 N +1
;== —1 ] = e ———— = .
A=+ <2j_1> =12, — K

(3.12)

In what follows, we shall denote by A;, for j =1,..., K
only the non-negative eigenvalues.

All eigenvalues except Ax = 0 are nondegenerate. The
doubly degenerate A\x = O eigenvalue has the geometric
multiplicity equal one (i.e., there exists only one eigen-
vector belonging to this eigenvalue). To show this fact it
is enough to show that there exist two different nonzero
eigenvectors ¥(¥) and 4(¥) such that

Mia®) = ¢ MFE) = 0. (3.13)

It can be easily checked by inspection that the above
equations are fulfilled by vectors with the components

aﬁj":—(%—wrl), ) =1,
(3.14)
a=1,...,N+1=2K.

To find eigenvectors corresponding to the nonzero eigen-
values we have to solve the equation

Mu® = Mv), (3.15)

which in the component notation reads

—(N—-a+ 1)”33.1 + Nv{) — (o — 1)v(j)

a—1

=[2(a—1) = N])\o{, (3.16)
or, after shifting the variable « — a + 1,
(@ = N, + [N = 2a = N)\ 1Y), — v =0,

(3.17)

In order to solve this second-order recurrence equation
we represent the components v, in the following integral
form:

v{) =/ t2~1 £ (t)dt,

t1

(3.18)

where the function () as well as a contour of integration
together with its end points ¢; and t; are to be found.
(We suppress in our notation the dependence of f on «
to simplify the following formulas.) Substituting (3.18)
into the recurrence relation (3.17) we get
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(3.11)

/ - =1 O (t)[u(t) + w(t)]dt =0, (3.19)

t1
where
ut) =t2 -2\t —1, w(t) = —Nt? + N(); + 1)t.
(3.20)

Integrating (3.19) by parts, we obtain

/:2 g1 [f(j)(t)w(t) - t% (f(j)(t)u(t))] dt

+tofD (tyu(t)|2 =0. (3.21)

If we choose fU)(t),t;, and t; in such a way that

t 2O Bu)] - 1O () = 0 (3:22)
and
t*fO) (t)u(t)|2 = 0, (3.23)

then (3.18) will be a solution of the recurrence equation
(3.17). Solution of (3.22) is straightforward:

which, after a short calculation using (3.20), gives

(3.24)

FO) = C(t — p1) =D (t — pg) =K+, (3.25)
where
prz2 =X £ /A2 +1, (3.26)

and we used N = 2K — 1. Now it can be seen that
the condition (3.22) is fulfilled by choosing t; = t; =
0 and we can perform the integration in (3.18) along a
complex path encircling one of the points p1, p2 (in fact,
one can prove that any choice of a contour leads to an
equivalent result). Taking the contour passing through
t = 0 and closing around the point p; and calculating the
integral with the help of Cauchy theorem we get, up to
a normalization constant,

o) = po-1 I=ZO (_I)I(Kl—j) (a-l- 1)

-1 l
(7 (%)
l P1

a=1,...,N+1=2K, (3.27)

which can be conveniently written in terms of a hyper-
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geometric function:

v =n¢ 'F(—a+1,j — K;-2K + 1;1+ 1/n2),
N+1

a=1..,N+1=2K; j=1,..,——=K,
(3.28)
where
2K —1 2K —1\2
ﬂj—(Ej—:—l‘>+ (2_7'—1) -1 (3.29)

Formula (3.28) represents the components of the eigen-
vector corresponding to the positive eigenvalue |[cf.
Eq. (3.12)]. One proves analogously that for eigenvec-
tors corresponding to the negative eigenvalue one has

ud) =Cn' " F(—a+1,j — K;—2K + L;1+1?),

N+1
j=1,..,~ 1 _g

a=1,...,N+1=2K, >
(3.30)

with 7; given, as previously, by (3.29). This time we have
written a (until now arbitrary) normalization constant C
explicitly because taking C = (—1)¥ =in?7=! and using
well-known symmetry properties of the l’xypergeometric
function [21] we can write

u) = o)

VoK—a+1" (3.31)

For further use we rewrite the eigenvectors (3.14), (3.28),
(3.30), and (3.31) using the original indexing. To this end
we have to substitute k = —N + 2(a — 1). We obtain,
thus, for the eigenvectors belonging to the zero eigenvalue
(3.14)

5 =1, a® = 12? k=-N,-N+2,...,N—1,N,

(3.32)

for the eigenvectors belonging to the positive eigenvalues
(3.28):

) _ _thkF Ntk . __ N41. . 2
v’ =, (=835, 5 — ML —Ny 1+ 1/n3)

k=-N,-N+2,...,.N—1,N,

,_"y_:_lzK__l’

i=l.. =

(3.33)

whereas for those corresponding to the negative eigenval-
ues

ug):v(jll’ k=-N,-N+2,...,N—

1, N,

N -1

) =K-1.

j=1,...,

(3.34)
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IV. BOUNDARY CONDITIONS AND EXACT
SOLUTIONS FOR ARBITRARY N

The full solution T(p) of the inhomogeneous sys-
tem of equations (2.8) is a sum of the general solution
T (hom) (p? of the homogeneous part and a particular so-
lution TP (p) of the full inhomogeneous system. Ac-
cording to the results of the previous section, the general
solution T(h°™) () of the homogeneous part reads [as re-
marked above we denote by A; the value corresponding
to the positive sign in Eq. (3.12)]

K-1
(hom) (p) = Z [ij(j) exp (%‘Jﬁ)
=1

+D;u? exp (—%—al—f):l
+ Cx ¥ 4 Dy (p\'r(K) + 2arﬁ(K)) . (4.1)

The components of a particular solution 7(*) of the full
(inhomogeneous) equation(2.8) can be written as
; 1 np n?
(inh) - _ 2_ P
T () 2Na2T Na 2N7

1/ . . 2
=37 (pv,(lK) + 2a*ru$,K)) ,

n=-N,—-N+2,....N—1,N, (4.2)

as can be easily checked by inspection using (2.8) and
(2.9). Equations(4.1) and (4.2) give the general solution
of the problem as a sum of the homogeneous (4.1) and
inhomogeneous (4.2) parts and must be supplemented
with the boundary conditions (2.7).

Without losing generality, we can assume that the
interval in question is symmetric around p = 0, i.e.,
A = —pp = —B. From the boundary conditions (2.7)
we infer immediately using (3.31),

Dk =0, C;=D;,

j=1,...,K—1, (4.3)

and we can rewrite the full solution (4.1) and (4.2) in the
form

K
Ta(p) = S C; (v exp(322) + uf exp(—322))
j=1

2
—% (o0 + 20750,

n=-N,—-N+2,...,N-2,N, (4.4)
where, in order to make the notation compact, we have
defined v(K) = $(K) /2 = u(®), The coefficients C) are
determined as the solution of the system of algebraic
equations T,,(pp) = 0,n = 1,3..., N (the remaining
boundary conditions at —pg are automatically fulfilled
due to the symmetry of the interval [A, B] = [—po, po))-
Explicitly the equations read
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K
ch( @ exp(3£2) + u) exp(— _;_P_o))
—

<.

1
2T

2
(pov%K) +2arﬁ$lK)) , n=1,3...,N.

(4.5)

Equations (4.4) and (4.5) are the main analytical re-
sults of the present paper. They reduce the problem of
the first mean passage time from the finite interval in the
case of the pure driving by the pre-Gaussian noise in the
form of N independent telegraph processes to a solution
of the system of linear algebraic equations (4.5). The re-
sults are valid for arbitrary values of the parameters I
and 7 characterizing the stochastic driving, the number
N of independent driving processes, and the length of
the interval 2pg.

The simplest case K = N = 1 (one telegraph noise)
corresponds to the dichotomous Markov process (5] and
gives

T(p) = T-1(p) + T1(p) = -2-11: (05— 0% + pO\/—%'. (4.6)

For reference let us remind the reader that the white noise
limit (1.3) [ — 0 in (1.2)] gives, under the assumption
of absorbing boundaries at p = %pq [5, 20]:

1

T(p) = 55 (p§ — P*) - (4.7)

The simplicity of the solution (4.4), (4.5) allows also an
effective numerical investigation of the dependence of the
solution on the number /N. Before presenting in the next
section results of this analysis let us make the following,
interesting observation. Generally, the system is charac-
terized by three independent parameters: the correlation
time of the driving process 7, its strength I', and the
length of the confining interval 2pq. It is, however, easy
to prove that the dimensionless times T, /7 as functions
of the dimensionless coordinate £ = p/py depends on
these parameters only through their dimensionless com-
bination:

_ Po 4.8
7 =T (4.8)

Indeed, from (2.3) we have ar = 4/I'r/N and Egs. (4.4)
and (4.5) can be rewritten, respectively, as

- Z G [UU) exp (;\z_ \gf"'fx>
T =1 T

+u{) exp (—é"— ZN'Yx)]
55 (@ + n?,

n=-N,—N+2,...,N—2,N, (4.9)

and
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2
—N-('7+n) , n=13...,N, (4.10)
hence C; /7, as well as T,,(z)/7, depend, for fixed z, only
on v, and N,

Ty = 7§, (%,N).

In the limiting case N — oo of the Ornstein-Uhlenbeck
process (2.5) we obtain thus

T=rf (\;127) (4.12)

where f is some universal function. The scaling law
(4.12) seems to us remarkable and not transparent from
the original formulation of the problem of first-passage
time in the presence of the Ornstein-Uhlenbeck process.

Let us close this section with a remark, that straight-
forward summations involving binomial coefficients and
the hypergeometric function lead to the following expres-
sion for MFPT for the pre-Gaussian noise (2.5)

___Z (77]+1>K+j_1 (nj_l)K—'j
277j

X cosh (A’;/YNJI))

(4.11)

- 5% [(73:)2 +N] ,

(4.13)

V. RESULTS FOR LARGE N

Figure 1 shows the mean first-passage time 7(p)
Eq. (2.5) calculated from (4.4) and (4.5) for v = 1 and
various values of V. It is clear that the solutions con-
verge rather rapidly for N > 20 to a universal curve.
The curves for N = 23 and N = 25 are not distin-
guishable for all practical purposes and we can assume
that N = 25 approximate reasonably the case N — oo,
i.e., the Ornstein-Uhlenbeck process. This observation is
fairly independent on the actual values of the parame-
ters 7,I', and po as indicated by Figs. 2 and 3 in which
~2 differs by an order from the one of Fig. 1. The effec-
tiveness of the approximation of the Ornstein-Uhlenbeck
process by a relative few composed independent random
telegraph signals was already observed in other models
[19].

Using the above approximation (i.e., N = 25 as corre-
sponding to the limiting case of the Ornstein-Uhlenbeck
process) we were able to investigate the dependence of
the mean first-passage time T on the correlation time of
the noise 7 and its intensity I'. Figure 4 shows the depen-
dence of the mean escape time from the middle (p = 0)
of an interval of the length 2p, = 2 for different values of
the intensity of the noise I'. The dependence of T on I' is
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2.45

2.40

T/+

6 .8 1.0

.4 .
P/ P,

FIG. 1. Dimensionless total first mean passage time T'/T
as a function of the dimensionless coordinate p/po for v2 = 1
and N = 1,3,...,25. Inset: detail in the vicinity of p = 0.
The consecutive curves corresponding to a growing number of
independent random telegraph signals N converge rapidly to
a universal curve.

12

10

.4 .6 .8 1.0
P/ Py

FIG. 2. Same as Fig. 1 but for 4% = 10.

.4 .6
P/ P,

FIG. 3. Same as Fig. 1 but for 42 = 0.1
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T(O)

FIG. 4. Maean first escape from the middle of the interval
[=po, po] time for N = 25 as a function of the correlation
time 7 for different values of the noise intensity I'' I' = 1
(solid line), I' = 5 (dashed line), and I" = 10 (dotted line).

presented in Fig. 5, which corresponds to the same situa-
tion as in Fig. 4, i.e., the escape time from the middle of
the interval [—1, 1] for different values of the correlation
time 7.

Numerical simulations of MFPT for the Ornstein-
Uhlenbeck process were performed in Ref. [12], where
results corresponding to our T(0) for pg = 1, I’ = 0.1,
and several values of T were reported. Figure 6 shows
the dependence of T'(0) on the correlation time 7 for the
above values of parameters. The dotted line corresponds
to the interpolation formula suggested in Ref. [12] and
given by

2 _ 2 pn
ﬂm=ﬂﬁ$~H4¢;

The curve corresponding to the dichotomous noise (N =

(5.1)

20

15

FIG. 5. Mean first escape from the middle of the interval
[—po, po] time for N = 25 as a function of the noise intensity
I" for different values of the correlation time 7: 7 = 1 (solid
line), 7 = 5 (dashed line), and 7 = 10 (dotted line).
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S a0
=
20
u L L L 1
1 1 10 100
T
FIG. 6. Dependence of the escape time T'(0) from the in-

terval [—1,1] on the correlation time 7. The noise intensity
is ' = 0.1. Our results (solid line), interpolation formula of
Ref. [12] (dotted line), dichotomous (single telegraph, N = 1)
noise (dashed line).

1) is given for reference. Although the qualitative behav-
ior of T'(0) as a function of 7 is very similar to the one
reported in Ref. [12] there is a significant quantitative
discrepancy between our results and those of Ref. [12].
The discrepancy grows with the correlation time 7.

VI. SUMMARY

In the present paper we have investigated the problem
of the mean first-passage time (escape time) for a colored
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Wiener-Lévy stochastic process driven by N random tele-
graph signals or the Ornstein-Uhlenbeck noise. We have
reduced the case of the Wiener-Lévy process driven by N
random telegraph signals to a solution of a system of lin-
ear algebraic equations. The Wiener-Lévy stochastic pro-
cess driven by the Ornstein-Uhlenbeck noise is recovered
in the limiting case of taking the number of independent
telegraph signals tending to infinity. From the derived
equations we have deduced exact scaling laws [Egs. (4.11)
and (4.12)] obeyed by the mean first-passage times in the
cases of RTS and Ornstein-Uhlenbeck stochastic driving.
The scaling law involves the length of the driving interval
as well as the intensity and the correlation time of the
process. These parameters are combined to a single con-
stant, i.e., a single parameter on which the dimensionless
MFPT depends. The rapid convergence of the random
telegraph results when their number N grows (cf. Figs. 1,
2, and 3) allows for effective calculations concerning the
Ornstein-Uhlenbeck process. Using the finite-N approxi-
mations we presented the dependence of the first-passage
time T for the Ornstein-Uhlenbeck process on the inten-
sity and correlation time of the process.
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